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Equilibrium structures of both homogeneous and heterogeneous systems are, within statisti-
cal thermodynamics, characterized by distribution functions. Using the approach proposed
recently – based on the determination of the cavity functions for the pair of hard spheres
(HS) and the combined body – we studied the effect of different choices of the probe HS
(which determines the shape of the combined hard body – enlarged dumbbell) on the pre-
diction of the distribution functions in binary mixtures of HS with the aspect ratio 0.9, ter-
nary mixtures with diameter ratios 1, 0.6 and 0.3, and density profiles of HS mixture with
the aspect ratio 2 near a hard wall. It was found that the method, that uses the average geo-
metric functionals determined for the probe HS with individual diameters multiplied by the
respective mole fractions yields better results than the approaches based on average probe
diameters.
Keywords: Distribution function; Density profile; Hard sphere mixture; Hard sphere near a
hard wall; Binary systems; Ternary systems; Enlarged hard dumbbell; Hard sphere chemical
potential; Probe diameter; Phase equilibria; Thermodynamics.

The knowledge of the structure of homogeneous fluids characterized by ra-
dial distribution functions (rdf) plays an important role in the prediction of
the P-V-T behavior of fluids as well as phase equilibria. In the case of sys-
tems of hard spheres (HS) near a hard wall, HS in a planar slit or in spheri-
cal pore, the density profiles (dp) provide similar structure characteristics
for studies of the P-V-T and thermodynamic behavior in inhomogeneous
systems. Information on rdf or dp follows from simulation studies1–9. At
low densities both the rdf and dp can be obtained from virial expansions; at
higher densities solution of the Ornstein–Zernike (OZ) integral equation2,10

and – more recently – density functional theory11–14 (DFT) are the accurate
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approaches to determine the structure characteristics of the above men-
tioned systems. Both the OZ and DFT approaches are quite versatile. How-
ever, often some initial information is needed and numerical solutions are
essential for these methods. These disadvantages do not occur in the geo-
metrical method considered by us recently, where rdf or df are determined
from the relation between the background (cavity) correlation function, Y,
and residual chemical potentials of pairs of HS and the corresponding com-
bined body, i.e. a hard dumbbell15,16. The approach is so far limited to hard
body fluids; it is rather simple and the recent version17,18 (which employs
the enlarged hard dumbbell (EHD)) makes it possible to describe
equilibrium structure of both homogeneous and heterogeneous systems,
pure fluids as well as mixtures in a simple way. Especially in the case of
complex mixtures, simplicity and readiness of the evaluation of Y or g is
very important. Actually, the residual chemical potential of the hard body
depends practically only on the geometric characteristics – volume, surface
area, mean radius, etc. – of the considered pair of HS and the corresponding
combined hard body.

The geometric characteristics of the combined hard body, i.e. EHD
(which originates when the probe is rolled over a hard dumbbell) depend
on the HS diameters and also on the diameter of the probe. The choice of
the probe diameter in the case of pure fluids, where the combined body is
just an enlarged homogeneous dumbbell, is unambiguous – it is equal to
the HS diameter of the dumbbell. In the case of mixtures with the com-
bined body equal to the enlarged heterogeneous dumbbell, different
choices may be considered. In our previous study19 we took the simplest
mixing rule σprobe = Σxi σi. A study of several ways of determining the geo-
metric functionals of the combined bodies in HS mixtures is the subject of
the present study.

THEORETICAL

Evaluation of the rdf is based on the relation15,16 between the background
correlation function Y (= g exp [u(r)/kT], where u stands for the pair poten-
tial, k is the Boltzmann constant, T temperature, and g radial distribution
function) and the residual chemical potentials ∆µi of single HS and those
for the combined hard body – hard dumbbell, ∆µ ij

hd ,

ln ( )/ .Y kTi j ij= + −∆ ∆ ∆µ µ µ hd (1)
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In the case of hard bodies, rdf equals the background correlation function
for all the distances of HS larger than the contact distance; for shorter dis-
tances Y is related to the correlation function, c.

The residual chemical potential can be expressed20 as

∆µ/ ln( )
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The reduced geometric functionals of the pure hard sphere fluids with the
HS diameter σ, R* = 2R/σ, S* = S/πσ2, Q* = 4Q/σ2 and V* = 6V/πσ3, are all
equal to one. (Here V, S, R stand for volume, surface area and the mean cur-
vature integral divided by 4π; Q characterizes overlap of three particles, R2 >
Q > S/4π.) In the case of mixtures Ri* = pi, Si* = Qi* = pi

2, Vi* = pi
3 where pi =

σi/σo and σo is the reference HS diameter.
The geometric characteristics of the combined hard body – EHD – depend

on pi’s and also on the diameter of the probe hard sphere, pp. For the en-
larged homonuclear dumbbell, pp is equal to the diameter of the studied
hard sphere, i.e. σp = σ = σo. If l (= L/σ) stands for the reduced center-
to-center distance of the pair of molecules and arcsin θ = l/2, then, for l ≤ 3
(refs21,22)

V l l* / cos= + − −1 3 2 33 θ θ (3)

S* cos= +1 2θ θ (4)

and

R l* cos .= + −1 θ θ (5)

For l from the interval ( 3, 2) the enlarged body is discontinuous (Fig. 1). It
is then necessary to add contributions δV*, δS* and δR* to volume, surface
area and mean radius, namely

δ φ θ φ θV* cos sin ( cos )= − +3 1 4 2
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δ φ θ φS* cos sin= − +2

δ φR* sin= −

where the angle φ follows from relation cos φ = 2 cos θ.
The remaining geometric functional, Q, is related to the overlap of three

HS’s. It has the dimension [l2] and values R2 ≤ Q ≤ (S/4π).
For prolate spherocylinders (PSC),

Q S R S= =( / ) ( / ) ./4 4 2 1 2π ξ ξ πwhere (6)

In the case of EHD’s, parameter Q is smaller than that of the correspond-
ing PSC; we assume Q = (S/4π)ξm with m = 1/2.

Geometric quantities in mixtures, Rij
* , Sij

* and Vij
* , are extensions of rela-

tions for pure fluids. Thus

R p p p pij i i j j i i j
* [ ( sin ) ( sin )] ( )( )c= + + + − + +1

2
1 1

1
4

θ θ θ θp os

(sin sin ) cos sin

θ

θ θ φ φ φ

i

i jp p p

+

+ + + −1
2

1
2p p p

(7)
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FIG. 1
Geometry of the EHD for distance l > 3. ri and rp stand for radii of a HS i and a probe, respec-
tively; θ and φ are angles, l is pair distance



S p p p p pij i i j j i i
* [ ( sin ) ( sin )] ( )(= + + + + + +1

2
1 1

1
2

2 2θ θ θp p θ θ

θ θ φ φ φ

j i

i jp p p

)cos

(sin sin ) cos sin

−

− + − +1
2

2 2 2
p p p

(8)

V p p p p p pij i j i i j j
* [( ) ( ) sin ( ) sin ]= + + + + + +

+

1
2

3 3 3 3 3 3
p pθ θ

1
4

1
4

3
4

3 2 3 2

2

( ) sin cos ( ) sin cosp p p p

p

i i i j j j+ + + −

−

p p

p

θ θ θ θ

( )( )cos sin cos cos sp p p p pi i j i+ + − + −p p p pθ θ θ φ φ φ φ1
2

3
2

3 2 3 3 in .φ

(9)

In Eqs (7)–(9)

pp probe= σ σ/ º

( )cos ( )cos cosp p p p pi i j j+ = + =p p pθ θ φ

θi il= arcsin

where

l p p p p l li i j= + − + +[( ) ( ) ]/ .p p
2 2 24 8

Geometric quantity Qij
* follows from Eq. (6). The reduced differences ∆R*,

∆S*, ∆Q* and ∆V* are defined as

∆X X X X x pi j ij i i
n* ( )/* * *= + − ∑ (10)

with n = 1 for ∆R*, n = 2 for ∆S* or ∆Q* and n = 3 for ∆V*.
Geometric quantities in the inhomogeneous system of HS near a hard

wall possess similar forms18,

R p p p pi i i i i i
* [( )( sin ) ( )( / )cos= + + − + + − +1

2
1

1
2

2 2p pθ π θ φ θ

+ + −π θ φ/ ( )cos ] sin2 p p pi ip p

(11)
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S p p p p pi i i i i
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From Eqs (7)–(9) it is clear that the differences in volume, surface area
and radius depend on the HS diameters of both the components, on their
center–center distance and also on the probe diameter σp or pp. In the old
version of this theory19, the combined hard bodies were considered to be
independent of the composition of a given mixture. With the use of the EHD
as a model of the combined body, the problem of a proper choice of pp =
σprobe/σo is not unambiguous. In our previous paper20 we took the approxi-
mation pp = Σxipi (where xi stands for the mole fraction of component i).
This approximation has proved to yield a fair prediction of the distribution
functions of mixtures of moderately different HS’s or mixtures with prevail-
ing concentration of one component. In the present study we consider
mixtures of HS’s highly different in their diameters and approximately
evenly included in the system. With the idea of unequal effect of different
HS probes (which are rolled over the given hard dumbbell) on the total geo-
metric quantities of EHD, we introduce further approximations for σprobe,
namely

p w pj
n

jp = ∑ ( ) (14)

where wj
n( ) stands for, e.g., the volume fraction, surface fraction, etc. (In all

the cases ∑ wj
n( )= 1.)

w x p x p n w xi
n

i i
n

j j
n

i i
( ) ( )/ , , , ( ) .= = =∑ 1 2 3 0 (15)

Finally, one can determine geometric quantities for the individual probe
diameters σprobe = σi, i = 1, 2, 3, ... and take an average of the obtained val-
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ues of Rij, Sij, Vij, Qij. Equivalent to this averaging is the approach of taking
average of ln Yij(pk),

ln ln ( ) .Y x Y pij k
k

ij k= ∑ (16)

Investigation of the above mentioned rules is the objective of the following
section.

RESULTS

In this study we consider first an equimolar binary mixture of HS of diame-
ters 1 and 0.9 at packing fraction y = 0.49. This system was studied experi-
mentally by Lee and Levesque23. The results obtained for the contact values
of distribution functions, gij, are listed in Table I for all the above men-
tioned mixing rules; values of pp are also included. From Table I it is clear
that, due to relatively small difference in the diameters, differences in the
calculated contact values of all gij are not significant. Thus, the application
of the simplest rule – used in our previous study18 – appears to be legiti-
mate.

Next we considered two ternary systems of HS’s with σ1 = 1, σ2 = 0.6 and
σ3 = 0.3, with the packing fraction y = 0.4, in one case with mole fractions
x1 = x2 = x3 = 1/3, in the other x1 = 1/6, x2 = 1/3 and x3 = 1/2. The simula-
tion studies are referred to in ref.24. Experimental values of the contact val-
ues of the distribution functions, gij, for all the pairs AA, BB, CC, AB, AC,
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TABLE I
Contact values of the radial distribution functions of the binary hard sphere mixture with
σ2/σ1 = 0.9, packing fraction y = 0.49 and mole fraction x1 = x2 = 0.5

Rule σP gAA gAB gBB

MC – 5.92 5.84 5.47

pp = Σxipi 0.950 5.82 5.64 5.46

pp = Σwi
(1)pi 0.953 5.81 5.63 5.46

pp = Σwi
(2)pi 0.955 5.80 5.62 5.45

Σxilng(pi) – 5.82 5.63 5.46



and BC are listed in the first row of Table II. The next rows bring values of
the rdf’s determined for the probe diameter equal to: (i) pp = ∑ x pi i , (ii) pp =
∑ w pi i

( )1 = ∑ ∑x p x pi i i i
2 / , (iii) pp = ∑ w pi i

( )2 = ∑ ∑x p x pi i i i
3 2/ and (iv) from an

approximation ln gij = ∑ x Yk ijln (pp = pk). (We did not consider volume frac-
tions wi

( )3 .) For the pairs of largest and smallest molecules AA and CC, we
determined the whole course of gii for the different above mentioned rules
in the interval xii ∈ (1, 2) (Figs 2 and 3). From the table and both the figures
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TABLE II
Contact values of the radial distribution functions of the ternary hard sphere mixture with
σ2/σ1 = 0.6, σ3/σ1 = 0.3, packing fraction y = 0.40 and mole fraction x1 = x2 = x3 = 1/3

Rule σP gAA gBB gCC gAB gAC gBC

MC – 4.12 2.96 2.24 3.69 2.77 2.63

pp = Σxipi 0.633 4.46 3.17 2.34 3.62 2.75 2.59

pp = Σwi
(1)pi 0.763 4.23 3.11 2.33 3.51 2.72 2.57

pp = Σwi
(2)pi 0.857 4.05 3.07 2.32 3.43 2.70 2.56

Σxilng(pi) – 4.24 3.12 2.33 3.52 2.72 2.58

FIG. 2
Radial distribution function for a pair of the biggest HS, gAA vs xAA, in the ternary system of HS
with diameter ratios 1, 0.6, 0.3 at packing fraction y = 0.40 and concentrations x1 = x2 = x3 =
1/3. 1 for pp = Σxipi, 2 for pp = ∑ w pi i

( )1 , 3 for pp = ∑ w pi i
( )2 , 4 for ln g = ∑ x Y pi iln ( )



one can conclude that the simplest approximation, pp = ∑ x pi i , is insuffi-
cient and the resulting value of pp too small; the use of the surface fractions
seems most appropriate. The best overall results follow from the method of
average logarithm, ln gij = ∑ x Y pk ij kln ( ).

In the case of the HS system with mole fractions x1 = 1/6, x2 = 1/3, x3 =
1/2, the concentration of the largest HS is relatively small and pp’s deter-
mined from the different mixing rules are similar (and approaching pp =
0.5). From Table III and Figs 4 and 5 (where gAA(xAA) and gBC(xBC) are de-
picted on the interval x ∈ (1, 2)), a fair prediction of gij from the approxima-
tion ln g = ∑ x Y pi iln ( ) in the whole considered interval is apparent.

The last system studied was a binary hard sphere mixture near a hard
wall. Density profiles of both the components, obtained by MC simulations
in a system with the HS diameter ratio σ2/σ1 = 2, mole fraction x2 = 0.2 and
bulk density ρb = 0.3209 were published by Malijevský14. Molecules of the
mixture components differ by an order of magnitude in their volumes; on
the contrary, the mole fraction of the bigger HS is rather small so that dif-
ferent ways of determining pp yield similar results. A comparison of the pre-
dicted and pseudo-experimental contact values of density of both the
components is given in Table IV. This comparison reveals a fair prediction
of the contact values of ρi when we approximated the probe diameter by
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FIG. 3
Radial distribution function for a pair of the smallest HS, gCC vs xCC, in the ternary system of
HS with diameter ratios 1, 0.6, 0.3 at packing fraction y = 0.40 and concentrations x1 = x2 = x3 =
1/3. 1 for pp = ∑ w pi i

( )1 , 2 for pp = ∑ w pi i
( )2 , 3 for ln g = ∑ x Y pi iln ( )
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FIG. 5
Radial distribution function for a pair of smaller and smallest HS, gBC vs xBC, in the ternary sys-
tem of HS with diameter ratios 1, 0.6, 0.3 at packing fraction y = 0.40 and concentrations x1 =
1/6, x2 = 1/3, x3 = 1/2. 1 for pp = ∑ x pi i , 2 for pp = ∑ w pi i

( )1 , 3 for pp = ∑ w pi i
( )2 , 4 ln g =

∑ x Y pi iln ( )

FIG. 4
Radial distribution function for a pair of the biggest HS, gAA vs xAA, in the ternary system of HS
with diameter ratios 1, 0.6, 0.3 at packing fraction y = 0.40 and concentrations x1 = 1/6, x2 =
1/3, x3 = 1/2 (only for approximation ln g = ∑ x Y pi iln ( ))



the value ∑ x pi i and/or determined ln g as ∑ x g pi iln ( ). Whereas the contact
values of ρ2 with different choices of pp change only marginally, ρ1 decreases
with the order of the fraction w(i) noticeably.

CONCLUSION

In this paper we have studied a simple geometric method to characterize
structure of homogeneous and inhomogeneous hard sphere systems com-
posed of two and more components. Such a method is important for sev-
eral reasons: (i) it provides a deep insight into the way the HS structure is
formed; (ii) for pure fluids even relatively complex methods of determining
distribution functions/density profiles are tractable whereas extension
of these methods to mixtures might be difficult and/or rather time-
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TABLE III
Contact values of the radial distribution functions of the ternary hard sphere mixture with
σ2/σ1 = 0.6, σ3/σ1 = 0.3, packing fraction y = 0.40 and mole fraction x1 = x2 = x3 = 1/2

Rule σP gAA gBB gCC gAB gAC gBC

MC – 4.54 3.17 2.32 3.69 2.77 2.63

pp = Σxipi 0.517 4.91 3.40 2.43 3.93 2.91 2.73

pp = Σwi
(1)pi 0.642 4.55 3.31 2.42 3.58 2.81 2.67

pp = Σwi
(2)pi 0.760 4.17 3.22 2.41 3.44 2.77 2.65

Σxilng(pi) – 4.61 3.34 2.43 3.80 2.87 2.71

TABLE IV
Contact values of the density profiles of the binary hard sphere mixture near a hard wall.
σ2/σ1 = 2, mole fraction x2 = 0.2 and ρb = 0.3209

Rule σP ρ1 ρ2

MC – 0.67 1.18

pp = Σxipi 1.2 0.59 1.21

pp = Σwi
(1)pi 1.333 0.49 1.14

pp = Σwi
(2)pi 1.500 0.37 1.06

Σxilng(pi) – 0.54 1.18



consuming; (iii) simplicity and quick acquirement of the structure charac-
teristics might be decisive for technical applications, such as applications in
chemical technology, biochemistry or geology. The studied method pos-
sesses such a traits and yields a fair description of the fluid structure in the
most important range of distances of HS pairs.

The use of the enlarged hard dumbbell model (instead of the standard
HB) for the combined hard body makes it possible to apply some results of
the convex body geometry and enables formulation of relationships for the
geometric quantities in the case of inhomogeneous systems. Extension of
such formulas to hard sphere mixtures is simple and straightforward.
However, a problem arises with the choice of the diameter of a HS probe
(= σprobe, pp = σprobe/σo), which determines the shape of the enlarged hard
body. From the present study it follows that simple prescription pp = ∑ x pi i

is sufficient in the case of mixtures whose HS diameters differ only slightly,
or when the smaller HS’s are more abundant. In other cases the use of the
surface fractions instead of mole fractions yields better results. The method
of determining of all the geometric quantities stepwise for all the different
diameters (of the respective HS’s) and their averaging, or – equivalently –
averaging of the logarithm of the background correlation function, appears
to be versatile and accurate. This approach is only slightly more laborious
than methods with one probe diameter only.

Prediction of the dependence of the radial distribution function or den-
sity profile at distances beyond twice the HD diameter remains still an open
problem, which is related to formulation of a suitable expression for the
evaluation of geometric quantity Q. While in the case of PSC (correspond-
ing in their shape to EHD) quantity Q in a relatively broad range is given by
a constant ratio of powers of R and S, in the case of EHD Q varies (i.e. power
m in the correction factor ξm) with the site–site distance l. We plan to deal
with this problem in future.

SYMBOLS

g radial distribution function
i, j, k indices
k Boltzmann constant
l site–site distance
n power
pi aspect ratio
Q geometric quantity of dimension, l2

R mean radius, mean curvature integral/4π
R* reduced mean radius
S surface area
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S* reduced surface area
X* reduced geometric quantity
xi mole fraction
Y background correlation function
y packing fraction
V volume
V* reduced volume
wi

( )2 surface fraction
∆X difference in geometric quantities
∆µ residual chemical potential
φ angle
µ chemical potential
θ angle
ρ density
σ diameter
ξ ratio of geometric quantities
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